The numerical radius and bounds for zeros of a polynomial

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Numerical Radius of a Matrix and Estimation of Bounds for Zeros of a Polynomial

We obtain inequalities involving numerical radius of a matrix A ∈ M n C. Using this result, we find upper bounds for zeros of a given polynomial. We also give a method to estimate the spectral radius of a given matrix A ∈ M n C up to the desired degree of accuracy.

متن کامل

A posteriori Error Bounds for the Zeros of a Polynomial

An algorithm for the computation of error bounds for the zeros of a polynomial is described. This algorithm is derived by applying Rouch6's theorem to a Newton-like interpolation formula for the polynomial, and so it is suitable in the case where the approximations to the zeros of the polynomial are computed successively using deflation. Confluent and clustered approximations are handled easily...

متن کامل

New Estimate for the Numerical Radius of a given Matrix and Bounds for the Zeros of Polynomials

In this paper we find new estimate for the numerical radius of a given matrix, and we prove that, this estimate is better than any estimate for the numerical radius. We present also new bounds for the zero of polynomials by using new estimate for the numerical radius of a companion matrix of a given polynomial and matrix inequalities.

متن کامل

Inequalities for the polar derivative of a polynomial with $S$-fold zeros at the origin

‎Let $p(z)$ be a polynomial of degree $n$ and for a complex number $alpha$‎, ‎let $D_{alpha}p(z)=np(z)+(alpha-z)p'(z)$ denote the polar derivative of the polynomial p(z) with respect to $alpha$‎. ‎Dewan et al proved‎ ‎that if $p(z)$ has all its zeros in $|z| leq k, (kleq‎ ‎1),$ with $s$-fold zeros at the origin then for every‎ ‎$alphainmathbb{C}$ with $|alpha|geq k$‎, ‎begin{align*}‎ ‎max_{|z|=...

متن کامل

On Bounds For The Zeros of Univariate Polynomial

Problems on algebraical polynomials appear in many fields of mathematics and computer science. Especially the task of determining the roots of polynomials has been frequently investigated. Nonetheless, the task of locating the zeros of complex polynomials is still challenging. In this paper we deal with the location of zeros of univariate complex polynomials. We prove some novel upper bounds fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2002

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-02-06623-6